Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice
نویسندگان
چکیده
Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice. Methods: Metabolic parameters, cardiac function, arterial pressure (AP), autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group) and ob/ob mice (OB group). Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF) and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress. Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals.
منابع مشابه
Leptin Administration Downregulates the Increased Expression Levels of Genes Related to Oxidative Stress and Inflammation in the Skeletal Muscle of ob/ob Mice
Obese leptin-deficient ob/ob mice exhibit a low-grade chronic inflammation together with a low muscle mass. Our aim was to analyze the changes in muscle expression levels of genes related to oxidative stress and inflammatory responses in leptin deficiency and to identify the effect of in vivo leptin administration. Ob/ob mice were divided in three groups as follows: control ob/ob, leptin-treate...
متن کاملObesity-induced metabolic disturbance drives oxidative stress and complement activation in the retinal environment
Purpose Systemic increases in reactive oxygen species, and their association with inflammation, have been proposed as an underlying mechanism linking obesity and age-related macular degeneration (AMD). Studies have found increased levels of oxidative stress biomarkers and inflammatory cytokines in obese individuals; however, the correlation between obesity and retinal inflammation has yet to be...
متن کاملAugmented Rac1 Expression and Activity are Associated with Oxidative Stress and Decline of β Cell Function in Obesity.
BACKGROUND The aim of this study was to clarify the relationship among Rac1 expression and activation, oxidative stress and β cell dysfunction in obesity. METHODS In vivo, serum levels of glucose, insulin, oxidative stress markers and Rac1 expression were compared between ob/ob mice and C57BL/6J controls. Then, these variables were rechecked after the administration of the specific Rac1 inhib...
متن کاملSex-specific autophagy modulation in osteoblastic lineage: a critical function to counteract bone loss in female
Age-related bone loss is associated with an increased oxidative stress which is worsened by estrogen fall during menauposis. This observation has drawn attention to autophagy, a major cellular catabolic process, able to alleviate oxidative stress in osteoblasts (OB) and osteocytes (OST), two key bone cell types. Moreover, an autophagy decline can be associated with aging, suggesting that an age...
متن کاملGlutathionylated Lipid Aldehydes Are Products of Adipocyte Oxidative Stress and Activators of Macrophage Inflammation
Obesity-induced insulin resistance has been linked to adipose tissue lipid aldehyde production and protein carbonylation. Trans-4-hydroxy-2-nonenal (4-HNE) is the most abundant lipid aldehyde in murine adipose tissue and is metabolized by glutathione S-transferase A4 (GSTA4), producing glutathionyl-HNE (GS-HNE) and its metabolite glutathionyl-1,4-dihydroxynonene (GS-DHN). The objective of this ...
متن کامل